On the Congruence ax + by = 1 Modulo xy
نویسندگان
چکیده
We give bounds on the number of solutions to the Diophantine equation (X+1/x)(Y +1/y) = n as n → ∞. These bounds are related to the number of solutions to congruences of the form ax+by = 1 modulo xy.
منابع مشابه
ON THE CONGRUENCE ax
We give bounds on the number of solutions to the Diophantine equation (X +1/x)(Y +1/y) = n as n tends to infinity. These bounds are related to the number of solutions to congruences of the form ax + by ≡ 1 modulo xy.
متن کاملExtensions of Wilson ’ S Lemma and the Ax
Recently R. M. Wilson used Fleck’s congruence and Weisman’s extension to present a useful lemma on polynomials modulo prime powers, and applied this lemma to reprove the Ax-Katz theorem on solutions of congruences modulo p and deduce various results on codewords in p-ary linear codes with weights. In light of the recent generalizations of Fleck’s congruence given by D. Wan, and D. M. Davis and ...
متن کاملExtensions of Wilson ’ S Lemma and the Ax - Katz Theorem
Recently R. M. Wilson used Fleck’s congruence and Weisman’s extension to present a useful lemma on polynomials modulo prime powers, and applied this lemma to reprove the Ax-Katz theorem on solutions of congruences modulo p and deduce various results on codewords in p-ary linear codes with weights. In light of the recent generalizations of Fleck’s congruence given by D. Wan, and D. M. Davis and ...
متن کاملSums of Products of Congruence Classes and of Arithmetic Progressions
Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a+im : i ∈ N0}. For positive integers a, b, c, d,m the sum of products set Rm(a)Rm(b)+Rm(c)Rm(d) consists of all integers of the form (a+im)(b+jm)+(c+km)(d+lm) for some i, j, k, l ∈ Z}. It is proved that if gcd(a, b, c, d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class R...
متن کاملAn Account of Congruences Mod pk Using Halley’s Method
In this paper we find solutions of congruences of the form ax ≡ b(mod p), k≥1 where a, b and n>0 are integers which are not divisible by a prime p using Halley's iterative algorithm. An algorithm is also proposed to reduce the degree of a nonlinear congruence modulo p. AMS Mathematics Subject Classification (2000): 05C25 • 11E04 • 20G15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 14 شماره
صفحات -
تاریخ انتشار 2005